AN EVALUATION SURVEY ON WETLAND BIRDS IN VAGAIKULAM RIVER BASIN OF TIRUNELVELI DISTRICT, TAMIL NADU, INDIA

M. THILAGAVATHI*, S. MABEL PARIMALA**

Birds are considered to be indicators of wetland ecosystem, management, restoration, and creation. The physio-chemical parameters of water quality such as pH, temperature, oxygen, chlorine, and salinity are important factors in creating reliable habitats. A study on wetland birds in the Vagaikulam river revealed 1.732 birds under 102 species from 33 diverse families. Their occurrence percentage showed a higher 7.75% in the *Accipitridae* family and the lowest 0.08% in the *Anhingidae* family. Maximum the species in *Ardeolagrayii* was abundant comprising, about 360 individual birds followed by *Corvus splendens* (301), *Ciconia nigra* (200), *Acridotheres tristis* (185), and *Casmerodius albus* (173). The number of birds observed, occurrence, species richness, and physiochemical parameters are good in the Vagaikulam river basin. The rich diversity of birds documented in the study site should be protected for conservation.

Keywords: wetland birds, conservation, water quality, abundance, diversity, Tamil Nadu.

INTRODUCTION

Wetlands are the most important area in which multiple numbers of ecosystems persist in the world because of nutrient richness, protection from flooding, food provision, and recreational values (Maltby & Acreman, 2011). Birds present in an ecosystem are considered to be an important consumer in aquatic systems and are indicators of both water quality and biodiversity (Rajpar & Zakaria, 2011). The migration of birds from one location to another for nesting and reproduction plays a vital role in its biodiversity. In India, about 310 bird species are documented in which most of the birds are migratory from other locations and countries such as China, Russia, Central Asia, and Tibet (Jeyapraba *et al.*, 2017).

India is enveloped with a wealth of ecosystems in different geographical locations. It is estimated that around 4.1 million hectares of wetland are covered 1.5 million are covered by natural and 2.6 million by manmade. In wetlands in Tamil Nadu, 31 natural wetlands cover an area of 58,068 hectares and 20,030

ROM. J. BIOL. - ZOOL., VOLUME 68, Nos. 1-2, P. 51-62, BUCHAREST, 2023

manmade wetlands cover an area of 2, 01,132 hectares (Venkatraman, 2005). In wetland ecosystem, the biodiversity of birds are affected due to several reasons such as food availability, abiotic changes (Lagos *et al.*, 2008), and physiological changes in the environment (Gillis *et al.*, 2008).

The river Thamiraparani flows along the region Vakaikullam situated in the Tirunelveli district of Tamil Nadu, India. River occupies west to east region mixed with Maruthur dam. It's surrounded by macrophytes like Eichornia, Pista, Lemna, and Hydrilla, fishes, trees, and a sandy area. The shape of the river is parallel from west to east. Water tanks are found in and around the river area. The water flows throughout the year, which attracts birds for their nesting and breeding.

Monitoring and documentation of wetland birds provide a shred of valuable evidence on the ecological health and current status of wetlands which can be a vital tool for evolving awareness regarding the conservation value of the wetlands. In the present study, an attempt has been made to investigate the abundance of bird species at Vagaikulam river, Tirunelveli, Tamil Nadu, India.

MATERIAL AND METHODS

Physiochemical analysis of water

The parameters such as temperature, pH, oxygen level, chlorinity, and salinity of the study area were analyzed. The water samples were collected and transferred immediately to the laboratory for analysis. Analysis was carried out in a prescribed manner by an Indian standard institution (1964).

Population and identification studies

The availability of birds was monitored and documented according to the method described by Spindler *et al.* (1981). Field binoculars $(7 \times 50^{\circ})$ were used to observe birds present in the study area. The birds were identified with the help of their special features according to Ali (1968) and Grimmett *et al.* (2001). The standardized common and scientific names of the birds were prepared using Manakadan & Pittie (2001).

Species richness

The richness of the species among the families and the percentage of occurrence in the study area were studied according to Krebs (1985).

RESULTS AND DISCUSSION

The physicochemical parameters of the water have significant importance for the survival of aquatic organisms in the ecosystem. The altered parameters such as pH, temperature, oxygen, salinity, and chlorinity of the water show drastic changes in the availability of natural habitat. The water sample analysis showed a pH range of 6.5 to 7.8 throughout our study range. These slight changes toward alkaline pH support higher macroinvertebrates. Similarly, Longcore *et al.* (2006) reports alkaline pH of pond water attracts more aquatic birds such as ducks. The temperature of the water was 27.6 to 29 C, oxygen level or 6.89 mg/l to 8.15 mg/l. chlorine level was 0.25 ppt range. The salinity of the water ranged from 0.42 to 0.80 ppt range. The obtained results are tabulated in table 1. The physiochemical parameters not only affect the aquatic population and habitat but also the green land areas, such as trees, around the ponds. This change in the growth of trees affects directly bird diversity in terms of habitat, nesting, migration, climatic disturbances, etc.

Table .	1
---------	---

Physico-chemical analysis of water sampled from Vagaikulam river (december 2019 to march 2020)

Sl. No.	Parameters	December	January	February	March
1	pH	6.65	6.92	7.8	6.5
2	Temperature (⁰ C)	27.65	28.64	28.0	29
3	Oxygen level (mg/l)	6.89	7.23	8.15	7.70
4	Chlorinity (ppt)	0.37	0.39	0.41	0.25
5	Salinity (ppt)	0.80	0.56	0.58	0.42

During our study period, 102 bird species were identified under 33 families. A similar study made on twenty-seven wetlands of Coimbatore, Perambalur, Trichy and Thiruvarur districts in Tamil Nadu documented 14,208 birds of 78 species under 33 families (Guptha *et al.*, 2011). The birds identified are from the same families with different species documented. The highest numbers of species (10) were identified from *Accipitridae* and *Jacanidae*, followed by 9 species from *Ardeidae*, 7 species from *Phasianidae*, 6 species each from *Scolopacidae*, *Passeridae*, and *Anatidae*.

About five species were identified from the *Ciconiidae* family, four species each from *Cuculidae* and *Nectarinidae*. About three species were identified *Apodidae*, *Columbidae*, *Corvidae*, and Phalacrocoracidae. In some families the number of species identified was limited or lesser from our study areas such as two and one species from *Hirundinidae*, *Meropidae*, *Strigidae*, *Sturnidae*, *Threskionithidae* followed by *Anhingidae*, *Centropodidae*, *Cerylidae*, *Coraciidae*, *Dacelonidae*, *Dendrocygnidae*, *Dicruridae*, *Laridae*, *Megalaimidae*, *Oriolidae*, *Pelecanidae*, *Psittacidae*, *and Tytonidae* respectively. The species birds are listed in the Table 2.

<i>a</i>	Checklist of wetland birds recorded in Vagaikulam River Basin					
S. No.	Family	Common Name	Scientific Name			
1	Accipitridae	Shikra	Accipiter badius			
2	Accipitridae	Eurasian Sparrow Hawk	Accipiter nisus			
3	Accipitridae	Eurasian Marsh Harrier	Circus aeruginosus			
4	Accipitridae	Pallid Harrier	Circus macrourus			
5	Accipitridae	Pied Harrier	Circus melanoleucos			
6	Accipitridae	Black-shouldered kite	Elanus caeruleus			
7	Accipitridae	Brahminy kite	Halliastur indus			
8	Accipitridae	Black Kite	Milvus migrans			
9	Accipitridae	Osprey	Pandion haliaetus			
10	Alcedinidae	Common kingfisher	Alcedo atthis			
11	Anatidae	Northern Pintail	Anas acuta			
12	Anatidae	Common Teal	Anas crecca			
13	Anatidae	Spot-billed Duck	Anas poecliorhyncha			
14	Anatidae	Gadwall	Anas strepera			
15	Anatidae	Ferruginous Pochard	Aythya nyroca			
16	Anatidae	Cotto pygmy goose	Nettapus coromandelianus			
17	Anhingidae	Oriental Darter	Anhinga melanogaster			
18	Apodidae	Indian Alpine Swift	Tachymarptis melba			
19	Apodidae	House Swift	Apus affinis			
20	Apodidae	Asian plam swift	Cypsiurus balasiensis			
21	Ardeidae	Grey Heron	Ardea cinerea			
22	Ardeidae	Purple Heron	Ardea purpurea			
23	Ardeidae	Pond Heron	Ardeola grayii			
24	Ardeidae	Cattle Egret	Bubulcus ibis			
25	Ardeidae	Great Egret	Casmerodius albus			
26	Ardeidae	Black Bittern	Dupetor flavicollis			
27	Ardeidae	Little Egret	Egretta garzetta			
28	Ardeidae	Weastern Reef Egret	Egretta gularis			
29	Ardeidae	Intermediate Egret	Mesophoyx intermedia			
30	Centropodidae	Greater Coucal	Centropus sinensis			
31	Cerylidae	Lesser peid kingfisher	Ceryle rudis			
32	Ciconiidae	Asian Open-billed Stork	Anastomus oscitans			
33	Ciconiidae	White Stork	Ciconia ciconia			

Table 2

Checklist of wetland birds recorded in Vagaikulam River Basin

Table 2 (continued)

	Γ	1 1	×
34	Ciconiidae	White-necked Stork	Ciconia episcopus
35	Ciconiidae	Black Stork	Ciconia nigra
36	Ciconiidae	Painted Stork	Mycteria leucocephala
37	Columbidae	Rock Pigeon	Columba livia
38	Columbidae	Indian Spotted Dove	Streptopelia chinensis
39	Columbidae	Eurasian Collared Dove	Streptopelia decaocta
40	Coraciidae	Indian Roller	Coracias benghalensis
41	Corvidae	Common Lora	Aegithina tiphia
42	Corvidae	Jungle Crow	Corvus macrorhynchos
43	Corvidae	House Crow	Corvus splendens
44	Cuculidae	Pied Cuckoo	Clamator jacobinus
45	Cuculidae	Indian Hawk Cuckoo	Hierococcyx varius
46	Cuculidae	Indian Cuckoo	Cuculus micropterus
47	Cuculidae	AsainKoel	Eudynamys scolopacea
48	Dacelonidae	White-throated kingfisher	Halcyon smyrnensis
49	Dendrocygnidae	Lesser Whistling Duck	Dendrocygna javanica
50	Dicruridae	Black Drongo	Dicrurus macrocercus
51	Hirundinidae	Red-rumped Swallow	Hirundo daurica
52	Hirundinidae	Barn Common Swallow	Hirundo rustica
53	Jacanidae	Pheasant-tailed jacana	Hydrophasianus chirurgus
54	Jacanidae	Bronze-winged jacana	Metopidius himantopus
55	Jacanidae	Black winged stilt	Himantopus himantopus
56	Jacanidae	Pied Avocet	Recurvirostra avosetta
57	Jacanidae	Red-wattled lapwing	Vanellus indicus
58	Jacanidae	Yellow-wattled lapwing	Vanellus malabaricus
59	Jacanidae	Lesser sand plover	Charadrius mongolus
60	Jacanidae	Little Ringed plover	Charadrius dubius
61	Jacanidae	Ringed plover	Charadrius hiaticula
62	Jacanidae	Kentish plover	Charadrius alexandrines
63	Laridae	Black-headed Gull	Larus ridibundus
64	Megalaimidae	White-cheaked Barbet	Megalamia viridis
65	Meropidae	Blue-tailed Bee-eater	Merops phillipinus
66	Meropidae	Green Bee-eater	Merops orientalis
67	Nectarinidae	Flower peaker	Dicaeum agile
68	Nectarinidae	Purple sunbird	Nectarinia asiatica

Table 2 (continued)

69	Nectarinidae	Losten's sunbird	Nectarinia lotenia
70	Nectarinidae	Purple-rumped sunbird	Nectarinia zeylonica
71	Oriolidae	Eurasian Golden Oriole	Oriolus oriolus
72	Passeridae	Red munia	Amandava amandava
73	Passeridae	Paddy Field Pipet	Anthus rufulus
74	Passeridae	Grey wagtail	Motacilla cinerea
75	Passeridae	Yellow wagtail	Motacilla flava
76	Passeridae	Large pied Wagtail	Motacilla maderaspatensis
77	Passeridae	Baya Weaver	Ploceus philippinus
78	Pelecanidae	Spot-billed Pelican	Pelecanus philippensis
79	Phalacrocoracidae	Little cormorant	Phalacrocorax niger
80	Phalacrocoracidae	Great cormorant	Phalacrocorax carbo
81	Phalacrocoracidae	Indian cormorant	Phalacrocorax fuscicollis
82	Phasianidae	Grey Francolin	Francolinus pondicerianus
83	Phasianidae	Red spur foul	Galloperdix spadicea
84	Phasianidae	White-breasted Waterhen	Amaurornis phoenicurus
85	Phasianidae	Common Coot	Fulica atra
86	Phasianidae	Common Moorhen	Gallinula chloropus
87	Phasianidae	Purple Swamphen	Porphyrio porphyria
88	Phasianidae	Ruddy-breasted crake	Porzana fusca
89	Psittacidae	Rodr-ringed parakeet	Psittacula krameri
90	Scolopacidae	Eurasian Curlew	Numenius arquata
91	Scolopacidae	Common Greenshank	Tringa nebularia
92	Scolopacidae	Wood Sandpipper	Tringa glareola
93	Scolopacidae	Green Sandpipper	Tringa ochropus
94	Scolopacidae	Little Stint	Calidris minuta
95	Scolopacidae	Temminek's Stink	Calidris temminckii
96	Strigidae	Spotted Owlet	Athene brama
97	Strigidae	Brown Wood Owl	Stripx leptogrammica
98	Sturnidae	Jungle Myna	Acridotheres fuscus
99	Sturnidae	Common Myna	Acridotheres tristis
100	Threskionithidae	Eurasian Spoonbill	Platalea leucorodia
101	Threskionithidae	Asain White Ibis	Threskiornis melanocephalus
102	Tytonidae	Barn Owl	Tyto alba

Birds are considered to be an indicator of the ecological conditions and productivity of an ecosystem (Desai & Shanbhag, 2007; Li & Mundkur, 2007). The richness of an ecosystem is denoted by the availability of diverse species, present in the ecosystem. Any changes in their environment make the species fly away to another location to avoid any obnoxious conditions (Ramamurthy & Rajakumar, 2014). The availability of different bird species from diverse families represents species richness (Table 3), the abundance of nutrient resources, and a non-toxic environment.

S. No.	Family	No. of Species	Percentage of Occurrence		
1	Accipitridae	9	7.75		
2	Alcedinidae	1 0.86			
3	Anatidae	6	5.17		
4	Anhingidae	1	0.08		
5	Apodidae	3	2.58		
6	Ardeidae	9	0.07		
7	Centropodidae	1	0.86		
8	Cerylidae	1	0.86		
9	Ciconiidae	5	4.31		
10	Columbidae	3	2.58		
11	Coraciidae	1	0.86		
12	Corvidae	3	3.44		
13	Cuculidae	4	4.31		
14	Dacelonidae	1	0.86		
15	Dendrocygnidae	1	0.86		
16	Dicruridae	1	0.86		
17	Hirundinidae	2	1.72		
18	Jacanidae	10	1.72		
19	Laridae	1	0.86		
20	Megalaimidae	1	0.86		
21	Meropidae	2	1.72		
22	Nectarinidae	4	3.44		
23	Oriolidae	1	0.86		
24	Passeridae	6	5.17		
25	Pelecanidae	1	0.86		

Table 3

Number of birds from different families and their occurrence percentage

Table 3 (continued)

8

26	Phalacrocoracidae	3	2.58
27	Phasianidae	7	1.72
28	Psittacidae	1	0.86
29	Scolopacidae	6	5.17
30	Strigidae	2	1.72
31	Sturnidae	2	1.72
32	Threskionithidae	2	1.72
33	Tytonidae	1	0.86

Species diversity among the birds from the same species and diverse community implies abundance. The documentation of the number of species from the same families helps to have a keen idea of the occurrence of wetland birds. Their percentage of occurrence was also calculated in Fig. 1.

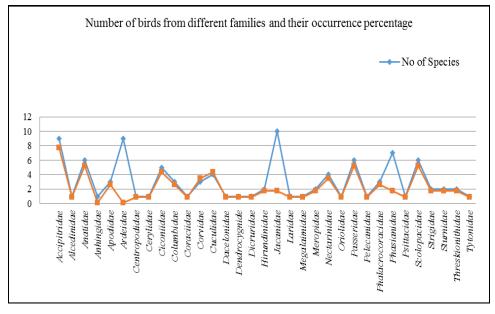


Fig. 1. Number of birds from different families and their occurrence percentage.

The occurrence of a few wetland species is most common in the study environment. This represents the unique nature of biodiversity and reliability. The most commonly observed species was *Ardeola grayii*, with 360 individuals their occurrence was 19.5% of the total. This exhibited the higher percentage from our study area, results documented are tabulated in the Table 4. the Multiple numbers of occurrence of the same species reveal the non-toxic nature and eco-friendly nature of an ecosystem. Nowadays the abundance of wetland species is reduced due to different environmental conditions, hunting, pollution, climate changes, etc. Proper measures are to be taken to safeguard the wetland ecosystem and monitor them.

S.No.	Common Name Scientific Name		Individual Numbers	Occurrence %
1	Pond Heron	Ardeola grayii	360	19.50
2	House Crow	Corvus splendens	301	16.30
3	Black Stork	Ciconia nigra	200	10.83
4	Common Myna	Acridotheres tristis	185	10.02
5	Great Egret	Casmerodius albus	173	9.37
6	Common Kingfisher	Alcedo atthis	162	8.77
7	Black Pigeon	Dicrurus macrocercus	130	7.04
8	Rock Pigeon	Columba livia	122	6.60
9	Green Sandpiper	Tringa ochropus	114	6.17
10	Common Hawk-Cuckoo	Heirococcyx varius	99	5.36

 Table 4

 Individual numbers and their occurrence rate of ten most abundant species

Most of the migratory birds are recorded in March. From December to March, there was a progressive increase in the number of migrant bird species (Table 5). Fig. 2 shows the number of migratory birds recorded from December 19 to March 20.

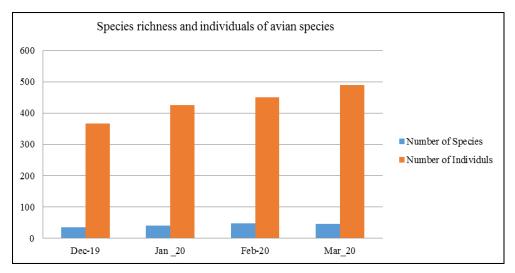


Fig. 2. Species richness and individuals of avian species.

Table	5
-------	---

Species richness and individuals of avian species

Month/Year	Number of Species	Number of Individuals
December 19	35	367
January 20	40	425
February 20	48	450
March 20	46	490
Total Counts	168	1732

There was much correlation between PH and saprobic index. PH values were much better correlated with diversity indices like the Shannon-Weiner index, Simpon's index, and the Margalef index. This indicates the direct relationship between the two indices. The temperature was highly co-related with pollution indicates like Niggard's index. The amount of oxygen did not correlate with any one of the indices at 95% significance. The co-Relation (r2) value between the physio-chemical parameter and Biomonitoring indices at P<0.05 was given in Table 6.

Table 6

Co-relation (r2) value between physio-chemical parameter and biomonitoring indices at p<0.05

Parameter	Saprobic index	Niggard's index	Palmer's pollution species index	Biological index	Shannon's index	Simpson's index	Margalef index	Menhinick index
PH	0.2	0.5	0.3	0.08	0.7	0.7	0.8	0.6
Temperature	0.5	0.6	0.2	0.2	0.5	0.4	0.3	0.4
Oxygen	0.1	0.2	0.1	0.2	0.2	0.2	0.2	0.13
Chlorinity	0.5	0.6	0.4	0.5	0.3	0.6	0.6	0.6
Salinity	0.1	0.3	0.1	0.4	0.5	0.5	0.6	0.5

CONCLUSIONS

The physiochemical parameters not only affect the aquatic population and habitat but also the green land areas, such as trees, around the ponds. This change in the growth of trees affects directly bird diversity in terms of habitat, nesting, migration, climatic disturbances, etc.

During our study period, 102 bird species from 33 families were identified. A similar study made on twenty-seven wetlands of Coimbatore, Perambalur, Trichy and Thiruvarur districts in Tamil Nadu documented 14,208 birds of 78 species from 33 families. The birds identified are from the same families with different species documented. The highest numbers of species 10 were identified from Accipitridae and Jacanidae, followed by 9 species from Ardeidae, 7 species from Phasianidae, 6 species each from Scolopacidae, Passeridae, and Anatidae. About five species were identified from the Ciconiidae family, four species each from Cuculidae and Nectarinidae. About three species were identified Apodidae, Columbidae, Corvidae, and Phalacrocoracidae. In some families the number of species identified was limited or lesser from our study areas such as two and one species from Hirundinidae, Meropidae, Strigidae, Sturnidae, Threskionithidae followed by Anhingidae, Centropodidae, Cerylidae, Coraciidae, Dacelonidae, Dendrocygnidae, Dicruridae, Laridae, Megalaimidae, Oriolidae, Pelecanidae, Psittacidae, and Tytonidae respectively.

Most of the migratory birds are recorded in March. From December to March, there was a progressive increase in the number of migrant bird species.

REFERENCES

ALI S., 1968, The Book of Indian Birds, 8th edition. Bombay Natural History Society, Bombay.

- DESAI, M., SHANBHAG, A., 2007. Birds breeding in unmanaged monoculture plantations in Goa, India. Indian Forester, 133: 1367–1372.
- GILLIS P.L., MITCHELL R.J., SCHWALBA A.N., MCNICHOLSA K.N., MACKIEA G.L., WOODB C.M., ACKERMANA J.D., 2008, Sensitivity of the Glochidia (larvae) of freshwater mussel to copper: Assessing the effect of water hardness and dissolved organic carbon on the sensitivity of endangered species. Aquatic Toxicology, 88: 137–145.
- GRIMMETT R., INSKIPP C., INSKIPP T., 2001, Pocket Guide of the Birds of the Indian subcontinent. Oxford University Press, Mumbai.
- GUPTHA M.B, VIJAYAN L., SANDALIYAN S., SRIDHARAN N., 2011, Status of Wetlands and Wetland Birds in Coimbatore, Trichy, Perambalore and Thiruvarur Districts in Tamil Nadu, India. World Journal of Zoology, 6: 154–158.
- JEYAPRABA L., PRIYADHARSHINI L., KALAIVANI B., 2017, A preliminary survey of wetland birds at Nainarkulam pond, Tirunelveli, Tamil Nadu. International Journal of Scientific Research and Modern Education, 2 (1): 105–108.
- KREBS C.J., 1985, *Ecology: the experimental analysis of distribution and abundance*. Third edition, Harper and Row Publishers, New York.
- LAGOS N.A., PAOLINI P., JARAMILLO E., LOVENGREEN C., DUARTE C., CONTRERAS H., 2008, Environmental processes, water quality degradation, anddecline of water bird populations in the Rio cruces wetland, Chile. Wetlands, 28: 938–950.
- LI Z.W.D., MUNDKUR T., 2007, Numbers and distribution of water birds and wetlands in the Asiapacific Region, Results of the Asian waterbird Census: 2002–2004. Wetlands International, Kualalumpur, Malaysia.
- LONGCORE J.R., MCAULEY D.G., PENDELTON G.W., BENNATTI C.R., MINGO T.M., STROMBORG K.L., 2006, Macro invertebrate abundance, water chemistry, and wetland characteristics affect use of wetlands by avian species in Maine. Hydrobiologia, 567: 143–167.
- MALTBY E., ACREMAN M.C., 2011, Ecosystem services of wetlands: pathfinder for a new paradigm. Hydrological Sciences Journal, 56: 1341–1359.
- MANAKADAN R., PITTIE A., 2001, Standardized common and scientific names of the birds of the Indian subcontinent. Buceros, 6 (1): 1–37.

- RAJPAR M.N., ZAKARIA M., 2011, Bird species abundance and their correlation ship with microclimate and habitat variables at Natural Wetland Reserve, Peninsular Malaysia. International Journal of Zoology, 758573, 17 pp.
- RAMAMURTHY V., RAJAKUMAR R., 2014, A study of avifaunal diversity and influences of water quality in the Udhayamarthandapuram bird sanctuary, Tiruvarur district, Tamil Nadu, India. International Journal of Innovative Research in Science, Engineering and Technology, 3: 8851–8858.
- SPINDLER M.A., MURTHY S.M., KESSEL B., 1981, Ground Census of water bird populations in upper Tanana Valley, Alaska. In: Miller P.L and Gunn A. (Eds.), Symposium on census and inventory methods for population and habitats. Proceedings North West, Sect. wild. sec., Banth, Alberts.

VENKATRAMAN K., 2005, Faunal Diversity of Tamil Nadu. ENVIS Newsletter, 2 (1): 152.

Received March 26, 2023

**Corresponding author: mabel_parimala@yahoo.com Department of Zoology, Centre for Vector biology and Pharmacology, St. Xavier's College (Autonomous – Affiliated to Manonmaniam Sundaranar University), Palayamkottai, Tirunelveli, Tamil Nadu, India – 627 002.

> * Research Scholar [19131282192013], Xavier's College, M.S University, Tirunelveli, Tamilnadu, India; e-mail: thilaga651@gmail.com